October 15, 2019

SPECIFICATION SHEET: PT_OILGAS

Description: Point oil and gas (pt_oilgas) emissions, for simulating 2016 and future year U.S. air quality

1.	Executive Summary	1
2.	. INTRODUCTION	2
3.	BASE YEAR INVENTORY DEVELOPMENT METHODS	3
	2016 point inventory from EIS	3
	Projection to year 2016 from 2014NEIv2	3
	Additional updates for 2016v1	5
4.	ANCILLARY DATA	5
	Spatial Allocation	5
	Temporal Allocation	5
	Chemical Speciation	5
5.	Emissions Projection Methods	6
	Growth: Production-related sources	7
	Growth: Transmission-related sources	9
	Controls: New Source Performance Standards (NSPS)	10
6.	Emissions Processing Requirements	18
7.	Emissions Summaries	19

1. EXECUTIVE SUMMARY

The pt_oilgas sector consists of point source oil and gas emissions in United States, partly from a 2016 EPA point inventory, and partly from a projection of 2014 National Emissions Inventory (NEI) version 2 to 2016. It also includes the federally-own oil and gas sources in the Gulf of Mexico. Base year inventories were processed with the Sparse Matrix Operator Kernel Emissions (SMOKE) modeling system version 4.7. SMOKE creates emissions in a format that can be input into air quality models. National and state-level emission summaries for key pollutants are provided. A summary of the methods to generate future year emissions inventories for years 2023 and 2028 is also provided.

2. INTRODUCTION

This document details the approach and data sources to be used for developing 2016 emissions for the point oil and gas (pt_oilgas) sector, which consists of oil and gas exploration, production, and distribution sources, both onshore and offshore, from the 2016 NEI Point inventory.

The starting point for the 2016 version 1 (2016v1) platform pt_oilgas inventory is the 2016 point source National Emissions Inventory (NEI). The 2016 inventory includes data submitted by state / tribal / local agencies and EPA to EPA's Emission Inventory System (EIS) for Type A (i.e., large) point sources. Point sources in the 2014 NEI not submitted for 2016 pulled are forward from the 2014 NEI unless they have been marked as shut down. The full point inventory is first split into separate components for the point emissions modeling sectors: ptegu, ptnonipm, and pt_oilgas. Sources in the pt_oilgas sector consist of sources which are not EGUs (i.e. IPM_YN is blank) and which have a North American Industry Classification System (NAICS) code corresponding to oil and gas exploration, production, or distribution. A list of all NAICS codes in the pt_oilgas sector is provided in Table 1. Further inventory preparation steps are outlined in the next section.

For the federally-owned offshore point inventory of oil and gas platforms, a 2014 inventory was developed by the U.S. Department of the Interior, Bureau of Ocean and Energy Management, Regulation, and Enforcement(BOEM) and further information on this inventory can be found at https://www.boem.gov/2014-Gulfwide-Emission-Inventory/.

	Type of point	
NAICS	source	NAICS description
2111, 21111	Production	Oil and Gas Extraction
211111	Production	Crude Petroleum and Natural Gas Extraction
211112	Production	Natural Gas Liquid Extraction
213111	Production	Drilling Oil and Gas Wells
213112	Support	Support Activities for Oil and Gas Operations
2212, 22121, 221210	Distribution	Natural Gas Distribution
4862, 48621, 486210	Transmission	Pipeline Transportation of Natural Gas
48611, 486110	Transmission	Pipeline Transportation of Crude Oil

Table 1: NAICS codes for pt_oilgas sector

3. Base Year Inventory Development Methods

2016 point inventory from EIS

The 2016 pt_oilgas inventory includes both sources with updated data for 2016, and sources carried forward from the 2014NElv2 point inventory. Each type of source can be identified based on the *calc_year* field, which is set to either 2016 or 2014. The pt_oilgas inventory was split into two components: one for 2016 sources, and one for 2014 sources. The 2016 sources were used in 2016v1 platform without further modification. The 2014 sources were projected to 2016 as described in the next section. Updates were made to selected West Virginia Type B facilities based on comments from the state.

Projection to year 2016 from 2014NEIv2

For pt_oilgas emissions that were carried forward from 2014NEIv2, the emissions were projected to represent the year 2016. Each state/SCC/NAICS combination in the inventory was classified as either an oil source, a natural gas source, a combination of oil and gas, or designated as a "no growth" source. Growth factors were based on historical state production data from Energy Information Administration (EIA) and are listed in Table 2. National 2016 pt_oilgas emissions before and after application of 2014-to-2016 projections are shown in Table 3. The historical production data for years 2014 and 2016 for oil and natural gas were taken from the following websites:

- https://www.eia.gov/dnav/pet/pet-crd-crpdn-adc-mbbl-a.htm (Crude production)
- <u>http://www.eia.gov/dnav/ng/ng_sum_lsum_a_epg0_fgw_mmcf_a.htm</u> (Natural gas production)

The "no growth" sources include all offshore and tribal land emissions, and all emissions with a NAICS code associated with distribution, transportation, or support activities. Idaho had no 2014 production data from EIA so assumed no growth for this state but the only sources in Idaho for this sector were pipeline transportation related. Maryland and Oregon had no oil production data on the EIA website. The factors provided in Table 2 were applied to sources with NAICS = 2111, 21111, 211112, and 213111 and with production-related SCC processes.

State	Natural Gas growth	Oil growth	Combination gas/oil growth
Alabama	-9.0%	-17.5%	-13.2%
Alaska	1.9%	-1.1%	0.4%

Table 2: 2014NEIv2-to-2016 projection factors for pt_oilgas sector for 2016v1 inventory

State	Natural Gas growth	Oil growth	Combination gas/oil growth
Arizona	-55.7%	-85.7%	-70.7%
Arkansas	-26.7%	13.6%	-6.6%
California	-14.2%	-9.1%	-11.7%
Colorado	3.5%	22.0%	12.8%
Florida	8.0%	-13.2%	-2.6%
Idaho	0.0%	0.0%	0.0%
Illinois	13.2%	-9.5%	1.8%
Indiana	-6.2%	-27.5%	-16.9%
Kansas	-15.0%	-23.4%	-19.2%
Kentucky	-1.6%	-23.1%	-12.4%
Louisiana	-11.0%	-17.4%	-14.2%
Maryland	70.0%	N/A	N/A
Michigan	-12.6%	-23.4%	-18.0%
Mississippi	-10.9%	-16.3%	-13.6%
Missouri	-66.7%	-37.2%	-52.0%
Montana	-11.9%	-22.5%	-17.2%
Nebraska	27.3%	-25.0%	1.2%
Nevada	0.0%	-12.3%	-6.2%
New Mexico	1.4%	17.4%	9.4%
New York	-33.4%	-36.8%	-35.1%
North Dakota	31.4%	-4.3%	13.6%
Ohio	181.0%	44.4%	112.7%
Oklahoma	5.9%	6.9%	6.4%
Oregon	-18.0%	N/A	N/A
Pennsylvania	24.8%	-7.9%	8.5%
South Dakota	-33.9%	-21.7%	-27.8%
Tennessee	-31.9%	-22.1%	-27.0%
Texas	-6.1%	1.0%	-2.6%
Utah	-19.8%	-25.4%	-22.6%
Virginia	-10.0%	-50.0%	-30.0%
West Virginia	28.9%	0.7%	14.8%
Wyoming	-7.5%	-4.7%	-6.1%

Table 3. 2016fh pt_oilgas national emissions (excluding offshore) before and after 2014-to-2016 projections

Pollutant	Before projections	After projections	% change 2014 to 2016
СО	175,929	177,690	1.0%
NH3	4,347	4,338	-0.2%
NOX	377,517	379,866	0.6%
PM10-PRI	12,630	12,397	-1.8%
PM25-PRI	11,545	11,286	-2.2%
SO2	35,236	34,881	-1.0%
VOC	127,242	129,253	1.6%

Additional updates for 2016v1

The state of Pennsylvania provided new emissions data for natural gas transmission sources for year 2016. These point source data replaced the emissions used in 2016beta. Table 3a illustrates the change in emissions with this update.

state	statefips	naics	poll	beta	v1	v1 - beta
Pennsylvania	42	486210	СО	2787	2385	403
Pennsylvania	42	486210	NOX	5737	5577	160
Pennsylvania	42	486210	PM10-PRI	400	227	173
Pennsylvania	42	486210	PM25-PRI	399	209	191
Pennsylvania	42	486210	SO2	30	33	-3
Pennsylvania	42	486210	VOC	1221	1149	71

Table 3a. Pennsylvania emissions changes for natural gas transmission sources.

4. ANCILLARY DATA

Spatial Allocation

Spatial allocation of pt_oilgas emissions to the national 36km and 12km domains used for air quality modeling is based on latitude and longitude data from the point source inventory.

Temporal Allocation

Reports summarizing total emissions according to the monthly, day-of-week, and hour-of-day temporal profile assignments were developed at the state and county level. The pt_oilgas sector does not use the same monthly profiles as np_oilgas, since those monthly profiles are specific to area sources derived from the Oil and Gas Tool.

Chemical Speciation

The pt_oilgas sector includes speciation of PM2.5 and VOC emissions, and does not use HAP integration for VOCs. Reports summarizing total PM2.5 and VOC emissions according to speciation profile were developed at the state and county level.

Oil and gas SCCs for associated gas, condensate tanks, crude oil tanks, dehydrators, liquids unloading and well completions represent the total VOC from the process, including the portions of process that may be flared or directed to a reboiler. For example, SCC 2310021400 (gas well dehydrators) consists of process, reboiler, and/or flaring emissions. There are not separate SCCs for the flared portion of the process or the reboiler. However, the VOC

associated with these three portions can have very different speciation profiles. Therefore, it is necessary to have an estimate of the amount of VOC from each of the portions (process, flare, reboiler) so that the appropriate speciation profiles can be applied to each portion. The Nonpoint Oil and Gas Emission Estimation Tool generates an intermediate file which file provides flare, non-flare (process), and reboiler (for dehydrators) emissions for six source categories that have flare emissions: by county FIPS and SCC code for the U.S. From these emissions we can compute the fraction of the emissions to assign to each profile. These fractions can vary by county FIPS, because they depend on the level of controls which is an input to the Speciation Tool.

5. Emissions Projection Methods

The Control Strategy Tool (CoST) was used to apply facility closures, projection/growth factors and controls to emissions modeling inventories to create future year inventories for point oil and gas emissions. Information about CoST and related data sets is available from <u>https://www.epa.gov/economic-and-cost-analysis-air-pollution-regulations/cost-analysis-</u> <u>modelstools-air-pollution</u>. CoST allows the user to apply projection (growth) factors, controls and closures at various geographic and inventory key field resolutions. Each of these CoST datasets, also called "packets" or "programs," provides the user with the ability to perform numerous quality assurance assessments as well as create SMOKE-ready future year inventories. Future year inventories are created for each emissions modeling sector via a CoST "strategy" and each strategy includes all base year 2016 inventories and applicable CoST packets. CoST uses three packet types as described below:

- 1. CLOSURE: If applicable, it is applied first in CoST. This packet can be used to zero-out (close) point source emissions at resolutions as broad as a facility to as specific as a stack. This packet type is used for the pt_oilgas sector.
- 2. PROJECTION: This packet allows the user to increase or decrease emissions for virtually any geographic and/or inventory source level. Projection factors are applied as multiplicative factors to the 2016 emissions inventories prior to the application of any possible subsequent CONTROLs. A PROJECTION packet is desirable when information is based more on activity assumptions rather than known control measures. The PROJECTION packet(s) is used for the pt_oilgas sector.
- 3. CONTROL: These packets are applied after any/all CLOSURE and PROJECTION packet entries. The user has similar level of control as PROJECTION packets regarding specificity of geographic and/or inventory source level application. Control factors are expressed as a percent reduction (0 to 100) and can be applied in addition to any preexisting inventory control, or as a replacement control where inventory controls are first backed out prior to the application of a more-stringent replacement control. The CONTROL packet(s) is used for the pt_oilgas sector.

Future year projections for the 2016v1 platform were generated for point oil and gas sources for years 2023 and 2028. These projections consisted of three components: (1) applying facility closures using CLOSURE packet, (2) using historical and/or forecast activity data to generate future-year emissions before applicable control technologies are applied (PROJECTION or growth factors component) and (3) estimating impacts of applicable control technologies on future-year emissions (CONTROL factors component). Applying the CLOSURE packet to the pt_oilgas sector resulted in small emissions changes in national summary shown in Table 4. Note the closures for years 2023 and 2028 are the same.

	2016v1 emissions	emissions reductions due to	
poll	(tons)	closures (tons)	% change
СО	177690	-187	-0.11%
NH3	4338	0	0.00%
NOX	379866	-284	-0.07%
PM10	12397	-9	-0.07%
PM25-PRI	11286	-9	-0.08%
SO2	34881	-178	-0.51%
VOC	129253	-106	-0.08%
СО	177690	-187	-0.11%
NH3	4338	0	0.00%
NOX	379866	-284	-0.07%
PM10	12397	-9	-0.07%
PM25	11286	-9	-0.08%
SO2	34881	-178	-0.51%
VOC	129253	-106	-0.08%

Table 4. Emissions reductions for years 2023 and 2028 due to source closures.

For the growth component, oil and gas sources were separate into production-related, transmission-related, and all other point sources by NAICS. These sources are further subdivided by fuel-type by SCC into either OIL, natural gas (NGAS), and BOTH oil-natural gas fuels possible. The next two subsections describe the growth component process.

Growth: Production-related sources

The list of NAICSs in the 2016v1 inventory that were considered production-related sources is given in Table 1 earlier in this document. There are too many NAICS-SCC combinations in the pt_oilgas inventory to list in this document, however these NAICS-SCC combinations were used to determine if the fuel produced related to each individual combination was either OIL, NGAS, or BOTH (oil and gas).

The growth factors for these NAICS-SCC combinations were generated in a two-step process. The first step used historical production data at the state-level to get state-level short-term trends or factors from 2016 to year 2017. In some cases, historical data for year 2018 was available for a state, in these cases the 2016 to year 2018 factor was calculated. This historical data was acquired from Energy Information Administration (EIA) from the following links:

- Historical Natural Gas: <u>http://www.eia.gov/dnav/ng/ng_sum_lsum_a_epg0_fgw_mmcf_a.htm</u>
- Historical Crude Oil: <u>http://www.eia.gov/dnav/pet/pet_crd_crpdn_adc_mbbl_a.htm</u>
- Historical CBM: <u>https://www.eia.gov/dnav/ng/ng_prod_coalbed_s1_a.htm</u>

The second step involved using the Annual Energy Outlook (AEO) 2019 reference case Lower 48 forecast production tables to project from year 2017 to the years of 2023 and 2028. Specifically, AEO 2019 Table 60 "Lower 48 Crude Oil Production and Wellhead Prices by Supply Region" and AEO 2019 Table 61 "Lower 48 Natural Gas Production and Supply Prices by Supply Region" were used in this projection process. The AEO 2019 forecast production is supplied for each EIA Oil and Gas Supply region shown in Figure 1.

The result of this second step is a growth factor for each Supply region from 2017 (or 2018) to 2023 and from 2017 (or 2018) to 2028. A Supply region mapping to FIPS cross-walk was developed so the regional factors could be applied for each FIPS. Note that portions of Texas

are in three different Supply Regions and portions of New Mexico are in two different supply regions. The state-level historical factor (2016 to 2017 or 2018) was then multiplied by the Supply region factor (2017 or 2018 to future years) to produce a state-level or FIPS-level factor to grow from 2016 to 2023 and from 2016 to 2028. This process was done using crude production forecast information to generate a factor apply to oil-production related NAICS-SCC combinations and it was also done using natural gas production forecast information. For the NAICS-SCC combinations that are designated "BOTH" the average of the oil-production and natural-gas production factors was calculated and applied to these specific combinations.

The state of Texas provided specific technical direction for growth of production-related point sources. Texas provided updated basin specific production for 2016 and 2017 to allow for a better calculation of the estimated growth for this one-year period. The AEO2019 was used as described above for the three AEO Oil and Gas Supply Regions that include Texas counties to grow from 2017 to 2023 and 2028 years. However, Texas only wanted these growth factors applied to two basins: Permain and Eagle Ford basins. The point sources in the other basins in Texas were not grown (2016v1=2023=2028 emissions).

Growth: Transmission-related sources

The list of NAICSs in the 2016v1 inventory that were considered transmission-related sources is given in Table 1 earlier in this document. There are too many NAICS-SCC combinations in the pt_oilgas inventory to list in this document, however these NAICS-SCC combinations were used to determine if the fuel produced related to each individual combination was either OIL or NGAS (natural gas) for transmission sources.

Projection factors were also generated using the same AEO 2019 tables listed in the previous section but no state historical data was used for these transmission sources. Therefore, the growth factors for transmission sources were developed by Oil and Gas Supply Region (Figure 1). Additionally, limits were put on these regional factors where the minimum factor was set to 1.0 and the maximum factor was set to 1.5 for transmission sources. Lastly, the states of Virginia and Pennsylvania provided source specific growth factors for natural gas transmission sources. The source specific growth factors were used in place of the AEO regional factors. Table 5 shows a national summary in the change of emissions after applying the PROJECTION packet to the production-related and transmission-related point sources in the pt_oilgas sector.

			emissions change	
			due to	
		2016v1	PROJECTION	%
year	poll	(tons)	packet (tons)	change
2023	СО	177690	39157	22.0%
2023	NH3	4338	39	0.9%
2023	NOX	379866	85640	22.5%
2023	PM10	12397	2309	18.6%
2023	PM25	11286	2197	19.5%
2023	SO2	34881	5075	14.6%
2023	VOC	129253	32227	24.9%
2028	СО	177690	44759	25.2%
2028	NH3	4338	45	1.0%
2028	NOX	379866	100430	26.4%
2028	PM10	12397	2827	22.8%
2028	PM25	11286	2702	23.9%
2028	SO2	34881	7388	21.2%
2028	VOC	129253	36157	28.0%

Table 5. Emissions changes in tons for years 2023 and 2028 due to the application of thePROJECTION packet for pt_oilgas sector sources.

Controls: New Source Performance Standards (NSPS)

The final step in the projection of emissions to a future year is the application of any control technologies or programs. For future-year New Source Performance Standards (NSPS) controls (e.g. oil and gas, Reciprocating Internal Combustion Engines (RICE), Natural Gas Turbines, and Process Heaters), we attempted to control only new sources/equipment using the following equation to account for growth and retirement of existing sources and the differences between the new and existing source emission rates.

Qn = Qo { [(1 + Pf)t - 1] Fn + (1 - Ri)t Fe + [1 - (1 - Ri)t] Fn] } Equation 1

where:

- Qn = emissions in projection year
- Qo = emissions in base year
- Pf = growth rate expressed as ratio (e.g., 1.5=50 percent cumulative growth)
- t = number of years between base and future years
- Fn = emission factor ratio for new sources
- Ri = retirement rate, expressed as whole number (e.g., 3.3 percent=0.033)
- Fe = emission factor ratio for existing sources

The first term in Equation 1 represents new source growth and controls, the second term accounts for retirement and controls for existing sources, and the third term accounts for replacement source controls. For computing the CoST % reductions (Control Efficiency), the simplified Equation 2 was used for 2028 projections:

Control_Efficiency₂₀₂₈(%) = 100 * (1- [(Pf_{2028} -1)*Fn + (1-Ri)¹² + (1-(1-Ri)¹²)*Fn]/ Pf_{2028}) Equation 2

Here, the existing source emissions factor (Fe) is set to 1.0, 2028 (future year) minus 2016 (base year) is 12, and new source emission factor (Fn) is the ratio of the NSPS emission factor to the existing emission factor. Table 6 shows the values for Retirement rate and new source emission factors (Fn) for new sources with respect to each NSPS regulation and other conditions within. For the pt_oilgas sector, the Oil and Gas NSPS, RICE NSPS, Process Heaters NSPS, and Natural Gas Turbines NSPS control programs were applied when estimating year 2023 and 2028 emissions for the 2016v1 modeling modelling platform. Further information about the application of NSPS controls can be found in Section 4 of the Additional Updates to Emissions Inventories for the Version 6.3, 2011 Emissions Modeling Platform for the Year 2023 technical support document (https://www.epa.gov/sites/production/files/2017-11/documents/2011v6.3 2023en update emismod tsd_oct2017.pdf).

NSPS Sector(s)		Retirement	Pollutant	Applied where?	New Source
Rule		Rate years	Impacted		Emission Factor
		(%/year)			(Fn)
				Storage Tanks: 70.3% reduction in growth-	0.297
				only (>1.0)	
				Gas Well Completions: 95% control	0.05
				(regardless)	
				Pneumatic controllers, not high-bleed	0.23
				>6scfm or low-bleed: 77% reduction in	
Oil and				growth-only (>1.0)	
Gas	np_oilgas,	No	VOC	Pneumatic controllers, high-bleed >6scfm	0.00
	pt_oilgas	assumption		or low-bleed: 100% reduction in growth-	
				only (>1.0)	
				Compressor Seals: 79.9% reduction in	0.201
				growth-only (>1.0)	
				Fugitive Emissions: 60% Valves, flanges,	0.40
				connections, pumps, open-ended lines, and	
				other	
				Pneumatic Pumps: 71.3%; Oil and Gas	0.287
		p_oilgas, t_oilgas 40, (2.5%)		Lean burn: PA, all other states	0.25, 0.606
	an aller:		NOx	Rich Burn: PA, all other states	0.1, 0.069
RICE	nt oilgas			Combined (average) LB/RB: PA, other states	0.175, 0.338
	P01603		<u> </u>	Lean burn: PA, all other states	1.0 (n/a), 0.889
				Rich Burn: PA, all other states	0.15, 0.25

NSPS	Sector(s)	Retirement	Pollutant	Applied where?	New Source
Rule		Rate years	Impacted		Emission Factor
		(%/year)			(Fn)
				Combined (average) LB/RB: PA, other states	0.575, 0.569
				Lean burn: PA, all other states	0.125, n/a
			VOC	Rich Burn: PA, all other states	0.1, n/a
				Combined (average) LB/RB: PA, other states	0.1125, n/a
Gas	ines pt_oilgas 45 (2	nt oilgas $15(2.2\%)$	NO	California and NOx SIP Call states	0.595
Turbines		45 (2.276)	NOX	All other states	0.238
Process	nt oilgos	30 (3.3%)	NO	Nationally to Process Heater SCCs	0.41
Heaters	pr_oligas		NUX		

For oil and gas NSPS controls, except for gas well completions (a 95 percent control), the assumption of no equipment retirements through year 2028 dictates that NSPS controls are applied to the growth component only of any PROJECTION factors. For example, if a growth factor is 1.5 for storage tanks (indicating a 50 percent increase activity), then, using Table 6, the 70.3 percent VOC NSPS control to this new growth will result in a 23.4 percent control: 100 *(70.3 * (1.5 -1) / 1.5); this yields an "effective" growth rate (combined PROJECTION and CONTROL) of 1.1485, or a 70.3 percent reduction from 1.5 to 1.0. The impacts of all non-drilling completion VOC NSPS controls are therefore greater where growth in oil and gas production is assumed highest. Conversely, for oil and gas basins with assumed negative growth in activity/production, VOC NSPS controls will be limited to well completions only. The amount of VOC emissions associated with well completions (SCC 31000101) in the point source inventory is small and limited to the states of California, Colorado, Florida, Louisiana, Oklahoma, and Texas. These reductions are year-specific because projection factors for these sources are year-specific. Table 7 lists the point source SCCs where Oil and Gas NSPS controls were applied; note controls are applied to production-related NAICS-SCC combinations (see NAICS in Table 1). Table 7a shows the reduction in VOC emissions after the application of the Oil and Gas NSPS CONTROL packet for both future years 2023 and 2028.

	FUEL		
SCC	PRODUCED	OILGAS NSPS CATEGORY	SCCDESC
			Industrial Processes;Oil and Gas Production;Crude Oil
31000101	Oil	2. Well Completions	Production;Well Completion;;
			Industrial Processes;Oil and Gas Production;Crude Oil
31000130	Oil	4. Compressor Seals	Production;Fugitives: Compressor Seals;;
			Industrial Processes;Oil and Gas Production;Crude Oil
31000133	Oil	1. Storage Tanks	Production;Storage Tank;;
		3. Pnuematic controllers:	Industrial Processes;Oil and Gas Production;Crude Oil
31000151	Oil	high or low bleed	Production;Pneumatic Controllers, Low Bleed;;
		3. Pnuematic controllers:	Industrial Processes;Oil and Gas Production;Crude Oil
31000152	Oil	high or low bleed	Production;Pneumatic Controllers High Bleed >6 scfh;;

Table 7. Point source SCCs in 2016v1 modeling platform where Oil and Gas NSPS controlswere applied.

	FUEL		
SCC	PRODUCED	OILGAS NSPS CATEGORY	SCCDESC
			Industrial Processes; Oil and Gas Production; Natural Gas
31000207	Gas	5. Fugitives	Production;Valves: Fugitive Emissions;;
			Industrial Processes;Oil and Gas Production;Natural Gas
			Production; All Equipt Leak Fugitives (Valves, Flanges,
31000220	Gas	5. Fugitives	Connections, Seals, Drains;;
			Industrial Processes;Oil and Gas Production;Natural Gas
31000222	Gas	2. Well Completions	Production;Well Completions;;
			Industrial Processes; Oil and Gas Production; Natural Gas
31000225	Gas	4. Compressor Seals	Production;Compressor Seals;;
		3. Pnuematic controllers:	Industrial Processes;Oil and Gas Production;Natural Gas
31000233	Gas	high or low bleed	Production;Pneumatic Controllers, Low Bleed;;
			Industrial Processes;Oil and Gas Production;Natural Gas
31000309	Gas	4. Compressor Seals	Processing;Compressor Seals;;
		3. Pnuematic controllers:	Industrial Processes;Oil and Gas Production;Natural Gas
31000324	Gas	high or low bleed	Processing;Pneumatic Controllers Low Bleed;;
		3. Pnuematic controllers:	Industrial Processes;Oil and Gas Production;Natural Gas
31000325	Gas	high or low bleed	Processing;Pneumatic Controllers, High Bleed >6 scfh;;
			Industrial Processes; Oil and Gas Production; Fugitive
31088811	Both	5. Fugitives	Emissions;Fugitive Emissions;;

Table 7a. VOC reductions (tons) after the application of the Oil and Gas NSPS CONTROLpacket for both future years 2023 and 2028.

year	poll	2016v1	emissions reductions	% change
2023	VOC	129253	-2523	-2.0%
2028	VOC	129253	-2808	-2.2%

For RICE NSPS controls, the EPA emission requirements for stationary engines differ according to whether the engine is new or existing, whether the engine is located at an area source or major source, and whether the engine is a compression ignition or a spark ignition engine. Spark ignition engines are further subdivided by power cycle, two-stroke versus four-stroke, and whether the engine is rich burn or lean burn. We applied NSPS reduction for lean burn, rich burn and "combined" engines using Equation 2 and information listed in Table 6. Table 8 lists the point source SCCs where RICE NSPS controls were applied for the 2016v1 platform; note controls are applied to production-related NAICS-SCC combinations (see NAICS in Table 1). Table 8a shows the reduction in emissions after the application of the RICE NSPS CONTROL packet for both future years 2023 and 2028.

Table 8. Point source SCCs in 2016 version 1 modeling platform where RICE NSPS controlsapplied.

	Lean, Rich, or	
SCC	Combined	SCCDESC
20200202	Combined	Internal Combustion Engines;Industrial;Natural Gas;Reciprocating;;
20200253	Rich	Internal Combustion Engines;Industrial;Natural Gas;4-cycle Rich Burn;;

	Lean, Rich, or	
SCC	Combined	SCCDESC
20200254	Lean	Internal Combustion Engines;Industrial;Natural Gas;4-cycle Lean Burn;;
20200256	Combined	Internal Combustion Engines;Industrial;Natural Gas;4-cycle Clean Burn;;
20300201	Combined	Internal Combustion Engines;Commercial/Institutional;Natural Gas;Reciprocating;;
		Industrial Processes; Oil and Gas Production; Natural Gas Production; Compressors
31000203	Combined	(See also 310003-12 and -13);;

Table 8a.	Emissions reductions (tons) after t	the application of the	RICE NSPS CONTROL packe
	for both future	years 2023 and 2028.	

year	poll	2016v1 (tons)	emissions reductions (tons)	% change
2023	СО	177,690	-20,258	-11.4%
2023	NOX	379,866	-53,694	-14.1%
2023	VOC	129,253	-436	-0.3%
2028	СО	177,690	-26,095	-14.7%
2028	NOX	379,866	-70,659	-18.6%
2028	VOC	129,253	-512	-0.4%

Natural Gas Turbines NSPS controls were generated based on examination of emission limits for stationary combustion turbines that are not in the power sector. In 2006, the EPA promulgated standards of performance for new stationary combustion turbines in 40 CFR part 60, subpart KKKK. The standards reflect changes in NOx emission control technologies and turbine design since standards for these units were originally promulgated in 40 CFR part 60, subpart GG. The 2006 NSPSs affecting NOx and SO₂ were established at levels that bring the emission limits upto-date with the performance of current combustion turbines. Stationary combustion turbines were also regulated by the NOx SIP (State Implementation Plan) Call, which required affected gas turbines to reduce their NOx emissions by 60 percent. Table 9 compares the 2006 NSPS emission limits with the NOx RACT regulations in selected states within the NOx SIP Call region (note the NO_x Budget Trading Program was effectively replaced by the Clean Air Interstate Rule (CAIR); see http://www3.epa.gov/airmarkets/progress/reports/program basics.html). The map showing the states and partial-states in the NOx SIP Call Program can be found at: https://www3.epa.gov/airmarkets/progress/reports/program basics figures.html#figure2. We assigned only those counties in Alabama, Michigan and Missouri as NOx SIP call based on the map on page 8. The state NOx RACT regulations summary (Pechan, 2001) is from a year 2001 analysis, so some states may have updated their rules since that time.

NOx Emission Limits for New Stationary Combustion Turbines					
Firing Natural Cas	<50	50-850	>850		
Firing Natural Gas	INIMIBIO/III	IVIIVIB I U/ nr	WIWBIU/nr		
Federal NSPS	100	25	15	ppm	
	5-100	100-250	>250		
State RACT Regulations	MMBTU/hr	MMBTU/hr	MMBTU/hr		
Connecticut	225	75	75	ppm	
Delaware	42	42	42	ppm	
Massachusetts	65*	65	65	ppm	
New Jersey	50*	50	50	ppm	
New York	50	50	50	ppm	
New Hampshire	55	55	55	ppm	
* Only applies to 25-100 MMBTU/hr					
Notes: The above state RACT table is from a 2001 analysis. The current NY State regulations have the					
same emission limits.					
New source emission rate (Fn)NOx ratio (Fn)Control (%)					
NOx SIP Call states plus CA = 25 / 42 = 0.595 40.5%				40.5%	
Other states = 25 / 105 =			0.238	76.2%	

Table 9. Stationary gas turbines NSPS analysis and resulting emission rates used to compute
controls

For control factor development, the existing source emission ratio was set to 1.0 for combustion turbines. The new source emission ratio for the NOx SIP Call states and California is the ratio of state NOx emission limit to the Federal NSPS. A complicating factor in the above is the lack of size information in the stationary source SCCs. Plus, the size classifications in the NSPS do not match the size differentiation used in state air emission regulations. We accepted a simplifying assumption that most industrial applications of combustion turbines are in the 100-250 MMBtu/hr size range and computed the new source emission rates as the NSPS emission limit for 50-850 MMBtu/hr units divided by the state emission limits. We used a conservative new source emission ratio by using the lowest state emission limit of 42 ppmv (Delaware). This yields a new source emission ratio of 25/42, or 0.595 (40.5 percent reduction) for states with existing combustion turbine emission limits. States without existing turbine NO_x limits would have a lower new source emission ratio -the uncontrolled emission rate (105 ppmv via AP-42) divided into 25 ppmv = 0.238 (76.2 percent reduction). This control was then plugged into Equation 2 as a function of the year-specific projection factor. Table 10 lists the point source SCCs where Natural Gas Turbines NSPS controls were applied for the 2016v1 platform; note controls are applied to production-related NAICS-SCC combinations (see NAICS in Table 1). Table 10a shows the reduction in NOx emissions after the application of the Natural Gas Turbines NSPS CONTROL packet for both future years 2023 and 2028.

Table 10. Point source SCCs in 2016 version 1 modeling platform where Natural Gas TurbinesNSPS controls applied.

SCC	SCC description
20200201	Internal Combustion Engines;Industrial;Natural Gas;Turbine;;
20200209	Internal Combustion Engines;Industrial;Natural Gas;Turbine: Exhaust;;
20300202	Internal Combustion Engines;Commercial/Institutional;Natural Gas;Turbine;;
20300209	Internal Combustion Engines;Commercial/Institutional;Natural Gas;Turbine: Exhaust;;
20200203	Internal Combustion Engines;Industrial;Natural Gas;Turbine: Cogeneration;;
20200714	Internal Combustion Engines;Industrial;Process Gas;Turbine: Exhaust;;
20300203	Internal Combustion Engines;Commercial/Institutional;Natural Gas;Turbine:
	Cogeneration;;

Table 10a. Emissions reductions (tons) after the application of the Natural Gas Turbines NSPSCONTROL packet for both future years 2023 and 2028.

			emissions	
			reduction	%
year	poll	2016v1 (tons)	(tons)	change
2023	NOX	379,866	-8,079	-2.1%
2028	NOX	379,866	-11,282	-3.0%

Process heaters are used throughout refineries and chemical plants to raise the temperature of feed materials to meet reaction or distillation requirements. Neither refineries nor chemical plants are included in the pt_oilgas sector. However, process heaters are often used at natural gas liquids plants and other point sources in this sector. Fuels are typically residual oil, distillate oil, refinery gas, or natural gas. In some sense, process heaters can be considered as emission control devices because they can be used to control process streams by recovering the fuel value while destroying the VOC. The criteria pollutants of most concern for process heaters are NOx and SO₂.

In 2016, it is assumed that process heaters have not been subject to regional control programs like the NOx SIP Call, so most of the emission controls put in-place at refineries and chemical plants have resulted from RACT regulations that were implemented as part of SIPs to achieve ozone NAAQS in specific areas, and refinery consent decrees. The boiler/process heater NSPS established NOx emission limits for new and modified process heaters. These emission limits are displayed in Table 11.

NO _x emission rate Existing (Fe)	Fraction a	Fraction at this rate	
	Natural	Forced	
PPMV	Draft	Draft	Average
80	0.4	0	
100	0.4	0.5	
150	0.15	0.35	
200	0.05	0.1	
240	0	0.05	
Cumulative, weighted: Fe	104.5	134.5	119.5
NSPS Standard	40	60	
New Source NO _x ratio (Fn)	0.383	0.446	0.414
NSPS Control (%)	61.7	55.4	58.6

Table 11. Process Heaters NSPS analysis and 2016v1 new emission rates used to estimate controls

For computations, the existing source emission ratio (Fe) was set to 1.0. The computed (average) NO_x emission factor ratio for new sources (Fn) is 0.41 (58.6 percent control). The retirement rate is the inverse of the expected unit lifetime. There is limited information in the literature about process heater lifetimes. This information was reviewed at the time that the Western Regional Air Partnership (WRAP) developed its initial regional haze program emission projections, and energy technology models used a 20-year lifetime for most refinery equipment. However, it was noted that in practice, heaters would probably have a lifetime that was on the order of 50 percent above that estimate. Therefore, a 30-year lifetime was used to estimate the effects of process heater growth and retirement. This yields a 3.3 percent retirement rate. This control was then plugged into *Equation 2* as a function of the year-specific projection factor. Table 12 lists the point source SCCs where Process Heaters NSPS controls were applied for the 2016v1 platform; note controls are applied to production-related NAICS-SCC combinations (see NAICS in Table 1). Table 12a shows the reduction in NOx emissions after the application of the Process Heaters NSPS CONTROL packet for both future years 2023 and 2028.

SCC	SCC Description
30190003	Industrial Processes; Chemical Manufacturing; Fuel Fired Equipment; Process Heater: Natural
	Gas;;
30600102	Industrial Processes;Petroleum Industry;Process Heaters;Gas-fired **;;
30600104	Industrial Processes;Petroleum Industry;Process Heaters;Gas-fired;;
30600105	Industrial Processes;Petroleum Industry;Process Heaters;Natural Gas-fired;;
30600106	Industrial Processes;Petroleum Industry;Process Heaters;Process Gas-fired;;
30600199	Industrial Processes;Petroleum Industry;Process Heaters;Other Not Classified;;

Table 12. Point source SCCs in 2016v1 modeling platform where Process Heaters NSPScontrols applied.

SCC	SCC Description
30990003	Industrial Processes; Fabricated Metal Products; Fuel Fired Equipment; Natural Gas: Process
	Heaters;;
31000401	Industrial Processes; Oil and Gas Production; Process Heaters; Distillate Oil (No. 2);;
31000402	Industrial Processes; Oil and Gas Production; Process Heaters; Residual Oil;;
31000403	Industrial Processes; Oil and Gas Production; Process Heaters; Crude Oil;;
31000404	Industrial Processes; Oil and Gas Production; Process Heaters; Natural Gas;;
31000405	Industrial Processes; Oil and Gas Production; Process Heaters; Process Gas;;
31000413	Industrial Processes;Oil and Gas Production;Process Heaters;Crude Oil: Steam Generators;;
31000414	Industrial Processes; Oil and Gas Production; Process Heaters; Natural Gas: Steam Generators;;
31000415	Industrial Processes;Oil and Gas Production;Process Heaters;Process Gas: Steam Generators;;
39900501	Industrial Processes; Miscellaneous Manufacturing Industries; Process Heater/Furnace; Distillate
	Oil;;
39900601	Industrial Processes; Miscellaneous Manufacturing Industries; Process Heater/Furnace; Natural
	Gas;;

Table 12a. Emissions reductions (tons) after the application of the Process Heaters NSPSCONTROL packet for both future years 2023 and 2028.

voar	noll	2016v1	emissions reductions (tops)	%
year	pon	(tons)		change
2023	NOX	379,866	-1,698	-0.4%
2028	NOX	379,866	-2,376	-0.6%

6. EMISSIONS PROCESSING REQUIREMENTS

The pt_oilgas emissions were processed for air quality modeling using the SMOKE¹ version 4.7 modeling system. As with all point source sectors, this is typically handled with two separate scripts, or "jobs": one which processes time-independent, or "onetime", programs (Smkinven, Spcmat, Grdmat, Smkreport, Elevpoint), and one which processes time-dependent programs (Temporal, Smkmerge).

The pt_oilgas sector was processed through SMOKE using a PELVCONFIG file that classifies a portion of the sector as "elevated". The criterion for elevated sources is a plume rise of 20 meters or greater, according to the Briggs algorithm². A value of 20 meters was chosen because this is a typical upper bound of Layer 1 in air quality modeling.

¹<u>http://www.smoke-model.org/index.cfm</u>

² <u>https://www.cmascenter.org/smoke/documentation/4.5/html/ch06s03.html</u> <u>#sect_programs_elevpoint_briggs</u>

Elevated sources were output to an inline point source file for input to CMAQ, and remaining sources are output to a 2-D gridded emissions file. Therefore, one must sum both files together to capture emissions from all pt_oilgas sources. The 2-D gridded emissions from pt_oilgas must be included in the 2-D sector merge. The reason all sources were not classified as elevated sources in pt_oilgas and ptnonipm, as is done with cmv_c3 and othpt, was to limit the size of the inline point source files from these sectors.

7. EMISSIONS SUMMARIES

National and state totals by pollutant for the 2016v1 platform cases are provided here. Plots and maps are available online through the LADCO website³ and the Intermountain West Data Warehouse⁴. The case descriptions are as follows:

2014fd = 2014NEIv2 and 2014 NATA

2016fe = 2016 alpha platform (grown from 2014NEIv2)

2016ff, 2023ff, and 2028ff = 2016, 2023, and 2028 cases from the 2016 beta platform

2016fh, 2023fh, and 2028fh = 2016, 2023, and 2028 cases from the 2016v1 platform

Pollutant	2014fd	2016fe	2016ff	2016fh	2023ff	2023fh	2028ff	2028fh
со	258,374	237,926	228,145	227,742	231,865	246,454	230,232	246,220
NH3	1,340	4,373	4,353	4,353	4,355	4,392	4,359	4,398
NOX	503,674	449,476	428,717	428,557	417,129	450,443	405,996	444,386
PM10	14,646	13,688	13,237	13,064	14,135	15,365	14,419	15,882
PM2.5	14,004	12,585	12,143	11,953	12,992	14,142	13,255	14,646
SO2	49,694	43,790	35,380	35,383	41,024	40,280	42,521	42,593
VOC	185,298	182,827	177,534	177,463	191,830	206,624	196,187	210,193

Table 13. Comparison of national total annual CAPS pt_oilgas emissions (tons/yr)

Table 14. Comparison of state total annual NOx pt_oilgas emissions (tons/yr)

State	2014fd	2016fe	2016ff	2016fh	2023ff	2023fh	2028ff	2028fh
Alabama	10,000	8,853	8,689	8,689	8,050	8,547	7,671	8,493
Alaska	39,296	40,554	40,586	40,586	40,586	40,586	40,586	40,586
Arizona	2,141	2,562	2,562	2,562	2,390	2,497	2,283	2,434
Arkansas	14,411	5,037	5,056	5,056	4,725	4,795	4,522	4,642
California	4,539	4,487	4,258	4,258	3,484	3,370	3,252	3,150
Colorado	23,943	23,189	24,568	24,568	23,568	25,107	22,523	23,667

³ <u>https://www.ladco.org/technical/modeling-results/2016-inventory-collaborative/</u>

⁴ <u>http://views.cira.colostate.edu/iwdw/eibrowser2016</u>

State	2014fd	2016fe	2016ff	2016fh	2023ff	2023fh	2028ff	2028fh
Connecticut	347	214	214	214	194	237	181	224
Delaware	19	19	19	19	17	19	15	19
Florida	5,312	6,432	6,432	6,432	6,138	7,268	5,906	7,563
Georgia	4,603	4,419	4,419	4,419	4,378	6,442	4,354	6,418
Idaho	884	1,091	1,091	1,091	974	995	902	930
Illinois	19,761	8,620	8,620	8,620	7,875	9,666	7,421	9,212
Indiana	8,042	5,148	5,148	5,148	5,053	7,333	4,995	7,275
lowa	7,378	5,051	5,051	5,051	4,941	4,941	4,874	4,874
Kansas	30,326	23,493	23,398	23,398	22,134	21,740	21,515	20,947
Kentucky	4,626	4,616	4,536	4,536	4,198	5,178	4,003	4,983
Louisiana	33,468	29,786	29,676	29,676	30,001	34,129	29,133	34,964
Maine	32	25	25	25	22	26	20	24
Maryland	119	157	157	157	152	208	149	205
Massachusetts	264	263	263	263	240	254	226	240
Michigan	13,504	10,714	10,700	10,700	9,786	11,204	9,217	10,710
Minnesota	2,131	2,837	2,837	2,837	2,743	2,743	2,685	2,685
Mississippi	12,299	12,266	12,259	12,259	11,181	12,258	10,519	12,095
Missouri	6,856	3,979	3,979	3,979	3,852	3,852	3,774	3,774
Montana	1,407	1,348	1,347	1,347	1,223	1,247	1,146	1,283
Nebraska	4,329	3,605	3,605	3,605	3,367	3,367	3,221	3,221
Nevada	269	215	215	215	195	198	182	186
New Jersey	270	233	233	233	221	297	213	289
New Mexico	17,234	15,975	9,748	9,748	9,534	10,517	9,185	10,381
New York	1,308	1,357	1,357	1,357	1,265	1,649	1,209	1,593
North Carolina	1,199	562	562	562	527	703	506	682
North Dakota	5,350	5,562	5,571	5,571	5,488	5,699	5,340	5,872
Ohio	9,192	11,337	11,413	11,413	10,674	13,217	10,242	12,712
Oklahoma	61,178	58,794	46,054	46,054	42,718	44,408	40,346	41,416
Oregon	421	421	421	421	392	397	375	382
Pennsylvania	6,018	6,056	6,091	5,931	5,587	6,649	5,299	6,315
Rhode Island	52	59	59	59	59	87	59	87
South Carolina	604	667	428	428	419	603	414	597
South Dakota	433	433	433	433	417	433	407	492
Tennessee	3,903	4,647	4,647	4,647	4,218	5,179	3,955	4,916
Texas	65,045	53,496	53,444	53,444	56,536	59 <i>,</i> 395	56,279	61,412
Utah	2,258	2,676	2,638	2,638	2,333	2,291	2,154	2,132
Virginia	631	733	733	733	716	2,874	705	3,011
Washington	444	754	754	754	678	678	631	631
West Virginia	12,060	11,918	10,059	10,059	9,889	13,139	9,793	12,919
Wisconsin	200	534	534	534	495	640	472	617

State	2014fd	2016fe	2016ff	2016fh	2023ff	2023fh	2028ff	2028fh
Wyoming	10,092	9,307	8,850	8,850	8,518	8,401	8,165	8,148
Offshore to EEZ	48,691	48,691	48,691	48,691	48,691	48,691	48,691	48,691
Tribal Data	6,785	6,287	6,287	6,287	6,287	6,287	6,287	6,287

Table 15. Comparison of state total annual SO2 pt_oilgas emissions (tons/yr)

State	2014fd	2016fe	2016ff	2016fh	2023ff	2023fh	2028ff	2028fh
Alabama	9,246	5,739	5,548	5,548	6,675	4,887	7,242	4,890
Alaska	1,699	1,649	1,653	1,653	1,653	1,653	1,653	1,653
Arizona	35	35	35	35	35	37	35	37
Arkansas	267	264	195	195	182	144	177	134
California	724	723	636	636	490	469	454	437
Colorado	522	506	514	514	562	595	563	603
Connecticut	2	3	3	3	3	4	3	4
Delaware	0	0	0	0	0	0	0	0
Florida	1,427	1,527	1,527	1,527	2,156	1,684	2,277	1,693
Georgia	4	4	4	4	4	6	4	6
Idaho	3	6	6	6	6	7	6	7
Illinois	61	129	129	129	129	190	129	190
Indiana	263	87	87	87	87	131	87	131
lowa	7	5	5	5	5	5	5	5
Kansas	43	37	37	37	36	34	36	33
Kentucky	113	113	112	112	112	167	112	167
Louisiana	790	877	865	865	1,288	1,517	1,380	1,685
Maine	1	1	1	1	1	1	1	1
Maryland	0	0	0	0	0	0	0	0
Massachusetts	2	2	2	2	2	2	2	2
Michigan	313	373	372	372	362	367	362	367
Minnesota	141	151	151	151	151	151	151	151
Mississippi	638	638	555	555	600	460	630	462
Missouri	5	3	3	3	3	3	3	3
Montana	106	69	69	69	69	71	69	85
Nebraska	4	3	3	3	3	3	3	3
Nevada	17	16	16	16	16	17	16	17
New Jersey	7	6	6	6	6	9	6	9
New Mexico	6,379	7,997	509	509	616	701	643	793
New York	29	10	10	10	10	15	10	15
North Carolina	3	2	2	2	2	2	2	2
North Dakota	5,125	3,860	3,883	3,883	4,120	4,382	4,097	4,703
Ohio	11	24	24	24	26	29	27	29

State	2014fd	2016fe	2016ff	2016fh	2023ff	2023fh	2028ff	2028fh
Oklahoma	649	652	279	279	301	326	295	309
Oregon	13	13	13	13	13	13	13	13
Pennsylvania	36	36	37	39	37	57	38	57
Rhode Island	1	2	2	2	2	3	2	3
South Carolina	7	7	2	2	2	3	2	3
South Dakota	1	1	1	1	1	1	1	1
Tennessee	17	4	4	4	4	6	4	6
Texas	14,205	12,200	12,160	12,160	15,033	16,428	15,827	18,089
Utah	503	582	483	483	478	438	481	443
Virginia	82	1	1	1	1	3	1	3
Washington	14	20	20	20	20	20	20	20
West Virginia	4	4	6	6	7	9	9	10
Wisconsin	0	0	0	0	0	0	0	0
Wyoming	5,495	4,728	4,728	4,728	5,032	4,552	4,962	4,636
Offshore to	502	502	502	502	502	502	502	502
Tribal Data	173	177	177	177	177	177	177	177

Table 16. Comparison of state total annual VOC pt_oilgas emissions (tons/yr)

State	2014fd	2016fe	2016ff	2016fh	2023ff	2023fh	2028ff	2028fh
Alabama	1,463	1,284	1,268	1,268	1,413	1,315	1,476	1,366
Alaska	1,375	1,689	1,689	1,689	1,689	1,689	1,689	1,689
Arizona	221	187	187	187	187	192	187	194
Arkansas	891	438	438	438	436	429	435	427
California	3,935	3,858	3,680	3,680	2,650	2,371	2,496	2,241
Colorado	23,897	23,059	23,943	23,943	27,086	29,910	27,745	30,133
Connecticut	30	86	86	86	86	128	86	128
Delaware	5	5	5	5	5	5	5	5
Florida	558	638	638	638	589	670	598	727
Georgia	592	559	559	559	559	829	559	829
Idaho	25	30	30	30	30	32	30	33
Illinois	1,702	1,348	1,348	1,348	1,343	1,891	1,343	1,891
Indiana	400	353	353	353	353	529	353	529
lowa	345	290	290	290	290	290	290	290
Kansas	3,720	2,977	2,979	2,979	2,903	2,796	2,891	2,728
Kentucky	1,141	1,123	1,104	1,104	1,080	1,241	1,080	1,241
Louisiana	11,233	11,152	11,098	11,098	14,218	16,487	14,882	17,937
Maine	69	53	53	53	53	79	53	79
Maryland	53	39	39	39	39	58	39	58

State	2014fd	2016fe	2016ff	2016fh	2023ff	2023fh	2028ff	2028fh
Massachusetts	79	78	78	78	78	79	78	79
Michigan	1,662	1,319	1,303	1,303	1,231	1,381	1,174	1,381
Minnesota	89	166	166	166	166	183	166	182
Mississippi	1,529	1,481	1,450	1,450	1,484	1,573	1,494	1,663
Missouri	350	220	220	220	220	222	220	222
Montana	896	924	925	925	931	1,029	942	1,156
Nebraska	343	312	312	312	312	314	312	314
Nevada	63	61	56	56	63	56	69	56
New Jersey	91	125	125	125	125	187	125	187
New Mexico	5,087	4,825	3,018	3,018	3,372	3,910	3,455	4,127
New York	463	447	447	447	447	667	447	667
North Carolina	236	144	144	144	141	216	141	216
North Dakota	1,189	1,298	1,299	1,299	1,399	1,540	1,413	1,690
Ohio	1,012	1,619	1,691	1,691	2,175	2,635	2,522	2,800
Oklahoma	33,574	33,783	29,946	29,946	31,735	36,394	32,335	35,495
Oregon	29	29	29	29	29	29	29	29
Pennsylvania	1,395	1,434	1,408	1,337	1,361	1,558	1,350	1,514
Rhode Island	37	33	33	33	33	49	33	49
South Carolina	124	114	74	74	74	106	74	106
South Dakota	9	9	9	9	9	10	9	12
Tennessee	231	340	340	340	340	503	340	503
Texas	22,703	23,395	23,382	23,382	28,588	29,214	29,900	31,212
Utah	401	434	434	434	453	436	467	439
Virginia	167	112	112	112	112	232	112	243
Washington	36	43	43	43	43	43	43	43
West Virginia	2,307	2,518	2,454	2,454	2,939	3,671	3,318	3,820
Wisconsin	212	225	225	225	225	325	225	325
Wyoming	9,249	8,409	8,262	8,262	8,973	9,358	9,392	9,377
Offshore to EEZ	48,210	48,210	48,210	48,210	48,210	48,210	48,210	48,210
Tribal Data	1,872	1,551	1,551	1,551	1,551	1,551	1,551	1,551